

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES SCHOOL OF HEALTH SCIENCES DEPARTMENT OF CLINICAL HEALTH SCIENCES

QUALIFICATION: BACHELOR OF HUMAN NUTRITION ,BACHELOR OF HEALTH INFORMATION SYSTEMS				
MANAGEMENT, BACHELOR OF ENVIRONMENTAL SCIENCES, BACHELOR OF BIOMEDICAL SCIENCES				
QUALIFICATION CODE: 07BHIS, 07BSHM,				
08BMLS, 08BOHN,08BOHS	NQF LEVEL: 5			
	COURSE CODE: HSS511S			
COURSE NAME: HEALTH SCIENCE STATISTICS	COOKSE CODE. 11333113			
SESSION: JUNE 2023	PAPER: THEORY			
DURATION: 3 HOURS	MARKS: 100			

	FIRST OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER	MR JJ SWARTZ AND MR SP KASHIHALWA
MODERATOR:	DR L AKU-AKAI

INSTRUCTIONS
 Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations.
3. All written work must be done in blue or black ink and sketches mus
be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 5 PAGES (Including this front page).

QUESTION 1 [20 MARKS]

Write down the letter corresponding to the best answer for each question.

1.1	if event A and event B are mutually exclusive and co	ollectively exhaustive, what is t	ne
	$P(A \cup B)$ time?		[2]
	A . 0.10		
	B . 0.50		
	C . 1.00		
	D . 1.01		
1.2	A stem and leaf plot allows you to:		[2]
	A. Detect difference between qualitative and quant	titative.	
	B. Detect distributional pattern of the data.		
	C. Remove outliers.		
	D. Positively skewed.		
1.3	Which of the following is the same as the median		[2]
	A. Mode		
	B. Central measure of tendency		
	C. Q ₂		
	D. Mediane		
1.4	If the probability of experiencing adverse event after	er COVID-19 vaccine is 0.2. Wh	at
	type of probability distribution can be used to find	that the next 12 vaccinated	
	individual will have no adverse event?		[2]
	A. Uniform distribution	B. Binomial distribution	
	C Paisson distribution	D. Normal distribution	

1.5	The amount or o	degree of spread is kr	nown as:		[2]
	A. Variety				
	B. Mid-spread				
	C . Variation				
	D. Variable				
1.6	who suffer from cancer?	cancer. What is the	group of 5 who suffer grobability that the pa	tient chosen suffe	
	A . 0.8	B . 0.20	C . 0.50	D . 0	
1.7	The measure of	dispersion will never	be:		[2]
	A. Zero				
	B. Negative				
	C. Spread out				
	D. Equal to 50%				
1.8	Measures of dis	persion include:			[2]
	A. mean, range	and skewness			
		n, mode and range			
		ce and standard devi	ation		
	D moan modia	n, mode and variance			
1.9		re spread out the gre			[2]
1.5	A. Mean, Mode		atter the.		[2]
		and deviation and Var	iance		
	C. Mean, Mode				
	D . B&C				
1.10	Which of the fol	lowing is a measure o	of dispersion:		[2]
	A. Average				
	B. Range	9			
	C. Median				
	D. Variance				

QUESTION 2 [26 MARKS]

2.1 Consider a survey of nurses' opinions of their working conditions. What types of variables are (Indicates if they are qualitative or quantitative and if they are continuous or discrete):

a)	Length of service	[2]
b)	Staff grade	[1]
c)	Age	[2]
d)	Salary	[2]
e)	Number of patients seen in a day	[1]
f)	Possession of a degree	[1]

2.2 The following data gives the number of COVID-19 cases detected in the 11 regions.

40	25	25	25	26	28	29	50	50	51	51
----	----	----	----	----	----	----	----	----	----	----

- **2.2.1** Calculate the average, median and mode and interpret your answer [7]
- **2.2.2** Compute the variation and standard deviation [5]
- **2.2.3** Construct an ordered stem and leaf for the number of COVID-19 cases [5]

Question 3 [26 MARKS]

3.1 The Ministry of Health and Social Services gets 60% of it is COVID-19 vaccines from a manufacturer in China and the remainder from a manufacturer in Russia. The quality of the COVID-19 delivered is given below.

Manufactures	% Of non-defective vaccines	% of defective vaccines
China	97	
Russia	93	

3.1.1 Find the probability of receiving a defective vaccine

- [8]
- **3.1.2** Find the probability that a randomly chosen vaccine comes from a Manufacturer in China and it is defective [3]

3.2 Suppose 100 General practitioner were asked whether they are in favour of or against taking COVID-19 booster shot. The table below summarised their opinion: $Use\ M=Male, F=Female, I=In-favour, A=against$

	In-favour	Against		Total
Male		15	45	60
Female		4	36	40
Total		19	81	100

3.2.1 Show that event female and in-favour are independent or not[3]3.2.2 Find P(in - favour/Male)[4]3.2.3 Find $P(in - favour \cup Male)$ [4]3.2.4 Find P(against/female)[4]

Question 4[28 MARKS]

4.1 A Clinician is interested in detecting COVID-19 vaccines adverse event, the Clinician observed 20 people to have adverse event in a total of 100 people observed. If the clinician observed 12 vaccinated people today, what is the probability of :

4.1.1 Observing no adverse event	[2]
4.1.2 Observing at most two adverse events	[4]
4.1.3 Observing at least four adverse event	[4]
4.1.4 Observing exactly two adverse event	[2]
4.1.5 Find the average number of adverse event	[2]

4.2 A dietician knows that an individual suffering from malnutrition is assumed to have an average of three balanced meals per day

- **4.2.1** What is the probability that an individual suffering from malnutrition receive no balanced meals per day [2]
- **4.2.2** What is the probability that an individual suffering from malnutrition receive at least 3 meals per day [5]
- 4.2.3 What is the probabilities that an individual suffering from malnutrition receive at least 2 meals per day
- 4.2.4 What is the probability that an individual suffering from malnutrition receive 1 meal per day [2]

END